Development of generic data assimilation software for programmers and end-users: COSTA and DATools

N. van Velzen, S. Hummel, M. Verlaan, A. Weerts, G El Serafy, J. Beckers, H. Gerritsen
Outline

• Introduction (Albrecht Weerts)
• COSTA (Nils van Velzen)
• DATools (Albrecht Weerts)
• Conclusions (Albrecht Weerts)
Introduction

RIKZ/TUDELFT

- Need for generic approach data assimilation for RIKZ models
- Need for generic tools at Delft University to avoid duplication of work

WL

- Data assimilation was successfully applied in SOBEK (EKF; since 1992!!) and HBV (PF/EnKF); DA functionality is promising also for other models, specifically in FEWS
- => Need for a flexible and generically applicable DA tool(box)
Introduction

- COSTA: focus on software for programmers and researchers (users group: TNO-MEP, TNO-NITG, HKV, WLDelft, VORTECH)

- DATools: focus on end-user (users group: flood and other forecasters around the world that use Delft-FEWS or stand-alone process models for forecasting purposes)
Introduction

- DATools is (partly) funded from doelsubsidie provided by Dutch Government which is used after consultation with Rijkswaterstaat (M. Verlaan) (vraagsturing/Delta instituut etc.)
 -> link with COSTA was suggested

- Goals: to learn from each other and to avoid duplication of work, agree upon generic interfaces so we can make use of each others work
COSTA

- What is COSTA
- Why COSTA
- Components and interfaces
- Developments
- User's group and Cooperation
What is COSTA

• Problem solving environment for data assimilation and model calibration
 – Definition of components and interfaces
 – Tools for easy creation of components
 – “Off the shelf” data assimilation and calibration methods
 – Development philosophy

• Free software (LGPL)
Aims

- Save on developments costs
- Reuse methods and models developed by others or for other projects
- Quickly try out alternative methods
- Less errors in the software
- Application for open and commercial simulation models
- Relatively easy to migrate existing software
Components and Interfaces

• A component is a nontrivial, nearly independent and replaceable part of a system that fulfills a clear function in the context of a well-defined architecture. A component conforms to and provides the physical realization of a set of interfaces.
Components and Interfaces

- Components are the building blocks of the system
- Identification of components in data assimilation and calibration systems:
 - Model
 - Method
 - Observations
 - State
Components and interfaces

• Object oriented approach
 – Multiple instances of a component
 – Parallel computing
• Definition of powerful interface that is manageable (usage and performance)
• Testing of developed ideas
COSTA components
Building Components

• Use generic implementation or create own
• Interface potentially consists of large set of methods. No need to implement them all!
 – Redundancy: COSTA can implement the method
 – Missing: Component can only be used for limited set of assimilation calibration methods
Example model AXPY

• The analysis step of a Kalman filter
 – Pseudo code of $x = x + dx$:

    ```python
    state = model.getstate
    state = state + delta_state
    model.setstate(state)
    ```
 – NOT FLEXIBLE

• Preferred in COSTA
 – model.axpy(1.0, delta_state)
Example model AXPY

• Preserve physical values in state:
 – Handle in filter
 – Handle in the setstate method
 – Handle in the axpy method

• COSTA has default implementation
 state=model.getstate
 state.axpy(1.0,delta_state)
 model.setstate(state)
COSTA developments (present)

• Base system available
 – Large number of small components
 – Model interface
 – Observation interface (Stochastic observer)

• Costa in combination with real models
 – WAQUA/TRIWAQ
 – Lotos-Euros
COSTA developments (near future)

• Model builders
 – Easy creation of COSTA model components
 – Easy creation of stochastic models from deterministic models

• Parallel computing in combination with COSTA

• Model calibration
COSTA users' group

- Group of data assimilation users from different institutes:
 - HKV
 - Rijkswaterstaat RIKZ
 - TNO (MEP, Geo wetenschappen)
 - TU Delft
 - VORtech
 - WL|Delft Hydraulics
Cooperation

• Kalimero (RIKZ)
 – Usage of COSTA in KALMINA:
 • Application of alternative methods
 • Usage of data assimilation and calibration for other applications than WAQUA/TRIWAQ

• DATools WLDelft
 – Remaining part of this presentation
DATools

• Delft-FEWS:
 - Open shell system for managing forecasting process
 - Shell provides general functional utilities
 - Open interface to forecasting modules
 - Being used in England & Wales (EA), Scotland (SEPA), Meuse & Rhine (RIZA), Switzerland (FOWG), Germany (BfG), Austria, Taiwan, Pakistan, EU (JRC Ispra), RIKZ (algea)
 - To be used in Italy (Po river), Singapore,...
 - Need for a data assimilation module
DATools

- Delft-FEWS

![Diagram of DATools components]

- Central Database
- Database Access Module
- Data Import & Export Module
- Generic Utilities
- Generic Module Adapter
- User Interfaces
- Workflow Server
- External Databases (e.g. Telemetry, NWP)
DATools

Linking Hydrological and Hydraulic models

General Adapter Module
- Published interface (XML)
- Module adapters
- HarmonIT interface
 (under development)

Examples of models linked…
- SOBEK & Sacramento (Delft Hydraulics)
- ISIS (HR), PDM & KW (CEH), HBV (SMHI), SYNHP (BfG), Mike11 (DHI), PRMS (Karslruhe), Vflo (USA), etc…
DATools

• Four components:
 - Sequence Manager
 - Filter (PF/EnKF)
 - Stochastic Observer (COSTA/DATools)
 - Stochastic Modeler (COSTA/DATools)
DATools

Model Interface:
- get / set FORCES state
- get OUTPUT state
- get / set PARAMETER state
- get / set COMPUTED state
DATools

PI: Published Interface:
- PiTimeSeries
 (FORCES / OUTPUT)
- PiModelState
 (PARAMETER / COMPUTED)
DATools

- DUE data uncertainty engine developed by James Brown (UVA, CBBG): user friendly GUI to specify uncertainties
- Model using PI-timeseries or “OpenMI”-approach
- Filter: EnKF and Particle Filter (Residual Resampling)
- Test are now being conducted with HBV-96, SOBEK & Delft-3D
- User friendly (configuration of XML files)
Conclusions

- Two lines of development but with interaction
- Development of generic interfaces => stochastic observer & modeler (model component)
- COSTA is available from internet: www.costapse.org
- Future work: Testing DATools in COSTA and vice versa